Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model.

نویسندگان

  • Ming Hu
  • June Chen
  • Huimin Lin
چکیده

The purpose of this study was to determine the mechanisms responsible for intestinal disposition of apigenin in the human Caco-2 cell culture model. The results indicated that most of the absorbed apigenin (10 microM) were conjugated and only a small fraction was transported intact. The amounts of conjugates excreted, especially that of the sulfate, were dependent on days-post-seeding. Apical efflux of apigenin sulfate did not change with concentration of apigenin (4 to 40 microM), whereas its basolateral efflux increased (p < 0.01) with concentration and plateaued at about 25 microM. In contrast, sulfate formation rates in cell lysate increased with concentration and plateaued at 25 microM and were 4 to 6 times faster than the corresponding excretion rates. Formation and polarized excretion rates of glucuronidated apigenin increased with apigenin concentration but formation rates were usually 2.5 to 6 times faster than the corresponding excretion rates. Inhibitors of multidrug resistance-related proteins (MRPs) such as leukotriene C4 and MK-571, which inhibited glucuronidation of apigenin at a high concentration (>or=25 microM), significantly decreased excretion of both apigenin conjugates, and higher concentrations of MK-571 increased the extent of inhibition. In contrast, an organic anion transporter (OAT) inhibitor estrone sulfate only inhibited excretion of apigenin sulfate. In conclusion, we have shown for the first time that intestinal efflux is the rate-limiting step in the intestinal excretion of phase II conjugates of flavones. Furthermore, MRP and OAT are involved in the intestinal efflux of these hydrophilic phase II conjugates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolism of flavonoids via enteric recycling: role of intestinal disposition.

The purpose of this study was to determine the importance of intestinal disposition in the first-pass metabolism of flavonoids. A four-site perfused rat intestinal model, rat liver and intestinal microsomes, Caco-2 cell microsomes, and the Caco-2 cell culture model were used. In the four-site model, approximately 28% of perfused aglycones are absorbed (approximately 450 nmol/30 min). Both absor...

متن کامل

Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates.

The purpose of this study was to continue our effort to determine how enzyme-transporter coupling affect disposition of flavonoids. The rat intestinal perfusion and Caco-2 cell models were used together with relevant microsomes. In perfusion model, isoflavone (i.e., formononetin and biochanin A) absorption and subsequent excretion of its metabolites were always site-dependent. Maximal amounts o...

متن کامل

Enteric disposition and recycling of flavonoids and ginkgo flavonoids.

OBJECTIVE The objective of this study was to determine the intestinal and microbial disposition of flavonoids and how these disposition processes affect their enteric recycling. DESIGN Studies were performed using a perfused rat intestinal model or using enrichment cultures and a pure isolate of Enterococcus avium (LY1). RESULTS In the rat intestine, aglycones, such as quercetin and apigeni...

متن کامل

Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities.

Flavonoids have poor bioavailabilities largely because of metabolism via UDP-glucuronosyltransferases (UGTs). This study aims to further understand the functions of UGT in metabolizing genistein and apigenin, two compounds metabolized more extensively in the gut than in the liver. Because Gunn rats are deficient in UGT1As, we determined whether this deficiency would result in less flavonoid glu...

متن کامل

Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids-structural requirements.

Recent studies in our laboratory in the human hepatic and intestinal cell lines Hep G2 and Caco-2 have demonstrated induction of UGT1A1 by the flavonoid chrysin (5,7-dihydroxyflavone) using catalytic activity assays and Western and Northern blotting. In the present study, we examined which features of the flavonoid structures were associated with induction of UGT1A1 and whether common drug-meta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 307 1  شماره 

صفحات  -

تاریخ انتشار 2003